Port of Tacoma Stormwater Management Program

Jason Jordan Director of Environmental and Planning Programs

People. Partnership. Performance.

Issue of Statewide Significance

- Stormwater is the #1 contributor of pollutant to to the Puget Sound
- Ecology's #1 priority
- Threatens our waterway clean-up efforts
 - Significant compliance and citizen suit risks

"Stormwater runoff is damaging salmon habitat. It's the Number 1 water pollution problem in the urban areas of our state, and it causes and contributes to flooding," Ecology publication #07-10-058

Strategic Plan

- **Goal #5**: Advance Environmental Stewardship
- **Objective:** Partner to find innovative solutions to our customers' environmental challenges
 - Initiative: Identify and develop maritime industrial stormwater treatment best management practices

Presentation Objectives

 Why stormwater management is so important

> How complex stormwater management has become

What an integrated program looks like

Permit types that apply to Port property

Phase I Municipal Permit (Municipal)

٠

٠

- Industrial
 Stormwater
 General Permits
 - Construction Stormwater Permits

Issuance Date: January 17, 2007 Effective Date: February 16, 2007 Expiration Date: February 15, 2012 PHASE I MUNICIPAL STORMWATER PERMIT National Pollutant Discharge Elimination System and State Waste Discharge General Permit estion issume Date: May i soon Etherne Date: July i Large and Medium Municipal Separate Storm Sewer Systems for discharges from INDUSTRIAL STORMWATER STATE OF WASHINGTON GENERAL PERMIT DEPARTMENT OF ECOLOGY OLYMPIA, WASHINGTON 98504-7600 when System (WOFS) and Sinto Wester Dachards In compliance with the provisions of Dischurzes The State of Washington Water Pollution Control Law Chapter 90.48 Revised Code of Washington The Federal Water Pollution Control Act (The Clean Water Act) Title 33 United States Code, Section 1251 et seq. Until this permit expires, is modified, or revoked, Permittees that have properly obtained 1251 d. 151 Utili this permit expires, is investiged or services, resistances that are properly commented coverage under this permit are authorized to discharge to waters of the state in accordance D- Del David C. Peeler Mar Water Depart orrest Sale December 1, 2010 Effective Date Expiration Date: January 1, 2011 December 31, 2015 CONSTRUCTION STORMWATER GENERAL PERMIT ational Polluman Discharge Blimination System (MPDES) and State Waste Discharge General Permit for Stormwater Discharges Associated with Construction Activity State of Washington Department of Ecology Olympia, Washington 9850 In compliance with the provisions of apter 95.48 Revived Unde of Washington of Washington Water Polittian Control Acti and Title 33 United States Code, Section 1231 et aug. Until this permit capines, is motified or revokal, Permitous that have property obtained overage under this general permit are authorized to circharge in accordance with the special and general counties and to low.

Phase I Municipal General Stormwater Permit

Tacoma

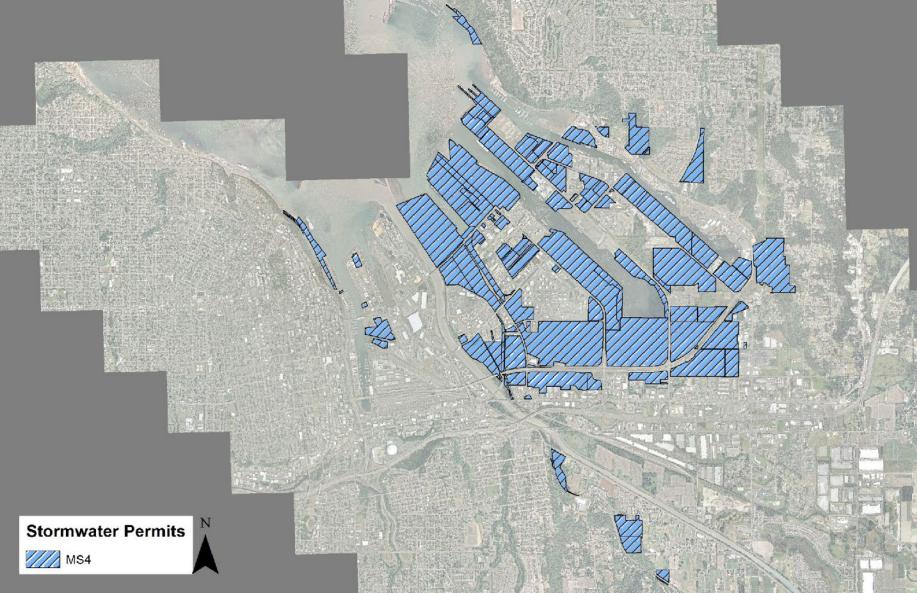
- Mandated to large container Ports
 - Port of Tacoma
 - Port of Seattle
- Requires the Port(s) to regulate like a city or county
 - Insure proper documentation
 - Inspect and report illicit discharges
- Substantial administrative requirements
 - Review and permit

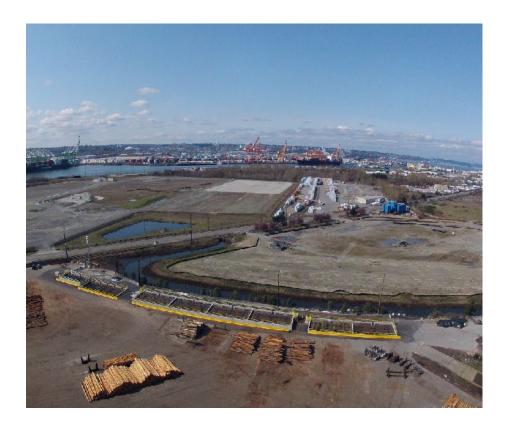
Phase I Municipal General Stormwater Permit Continued

Stormwater treatment requirements

٠

•


- Review and analyze proposed treatment
- Port and tenant development
- Inter local Agreement with the City of Tacoma
 - Define roles and responsibilities
 - Cost for service


Port properties covered by MS4 Permit

Industrial Stormwater General Permit (ISGP)

- Applies to the majority of port related uses
- State Benchmarks

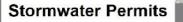
Parameter	Benchmark			
Zinc	117 μg/L			
Turbidity	25 NTU			
рН	5.0 - 9.0			
Copper	14 µg/L			
Chemical Oxygen Demand	120 mg/L			
Total Suspended Solids	30 mg/L			
Diesel	10 mg/L			
Oil Sheen	No visible			

Log yard biofiltration system

Industrial Stormwater Permit General (ISGP)

- Discharges above benchmarks must take actions
- Action Levels

1 QTR	Level 1	Operational BMPs
2 QTR	Level 2	Structural BMPs
3 QTR	Level 3	Treatment BMPs



2014 ISGP Facilities in Corrective Actions

3

Z

Ν

Industrial Permit Corrective Action Examples

- Log Yards
- · Rail Yards
- Container Terminals

Logyard ISGP Retrofit from September 2013 To December 2014

	Bench-						٤				
ТРТ	marks	Q1/2015	Q4/2014	Q3-2014	Q2-2014	Q1-2014	ste d	Q4-2013	Q3/2013	Q2/2013	Q1-2013
Turbidity	25	3.6	13.5	23.2	11.4	24.5		212	428	>1000	>1000
Zinc	117	21.2	5.7	<0.5	9	16.4	tru	102	281	149	302
Copper	14	4.2	12.5	<0.5	2.8	6	trat ons	10.3	26.3	24	36.6
COD	120	38	85	76	200	310	ofil c	290	890	1100	2200
TSS	100	1.5	3.5	15	9.5	12	Bi	94	410	610	<mark>570</mark>

2013 Project cost: \$4.7M

July 2014

August 2011

ISGP Level 3 Retrofit - Logyard

COD reduced 98.7%

Turbidity reduced 99.6%

TSS reduced 98.7%

Biofiltration using compost, biochar and sand

Tacoma

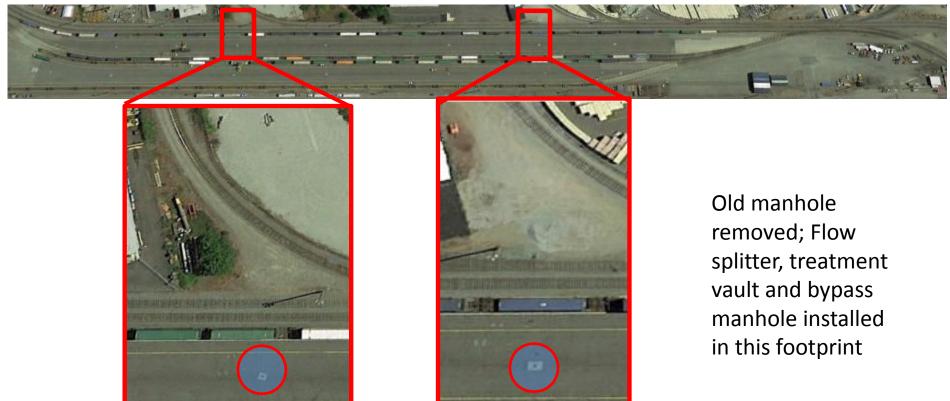
NIM ISGP Retrofits from September 2013 To December 2014


	Bench-											
• NIM	marks	Q1-2015	Q4-2014	ar	lon	Q3-2014	Q2-2014	Q1-2014	Q4-2013	Q3-2013	Q2-2013	Q1-2013
Turbidity	25	17	22	-	tlan Ilati	185	9.29	74.4	30.8	19	31.6	<mark>216</mark>
Zinc	117	52	76.1	Š	We	488	38.2	194	138	192	116	324
Copper	14	CA	CA			CA						

2014 Project cost: \$574,000

ISGP Level 3 Retrofit – NIM

Modified Modular Wetland – biofiltration using manufactured media made from shale


Zinc reduced 60%

SIM ISGP Retrofits from September 2013 To December 2014

	Bench-										
SIM-1	marks	Q1-2015	Q4-2014	fish lled	Q3-2014	Q2-2014	Q1-2014	Q4-2013	Q3-2013	Q2-2013	Q1-2013
Turbidity	25	15	14.6	llyfi tall	30.3	33.4	123	19.3	153	39.1	109.5
Zinc	117	15.3	65.7	Jel ins	85.5	80	167	32.9	313	89.4	108
Copper	14	1.8	2.85		18.5	11	7	4.4	26.6	8.1	11.4

2014 Project cost: \$811,000

ISGP Level 3 Retrofit – SIM Rail

Jellyfish – solids removal using membrane filtration

Turbidity reduced 70%

OCT ISGP Retrofits from September 2013 To December 2014

	Bench-		ed								
ОСТ	marks	Q1-2015	installe	Q4-2014	Q3-2014	Q2-2014	Q1-2014	Q4-2013	Q3-2013	Q2-2013	Q1-2013
Turbidity	25	7.2		58.8	16.6	9.4	<mark>84.8</mark>	17.8	14.7	14.8	<mark>290</mark>
Zinc	117	57.9	UpFlo	239	170	113	271	188	236	127	577
Copper	14	СА	Чр	СА	СА	СА	СА	СА	СА	СА	CA

2014 Project cost: \$1.9M

ISGP Level 3 Retrofit – Container Terminal

UpFlo treatment device using compost and sand media

Turbidity reduced 84%

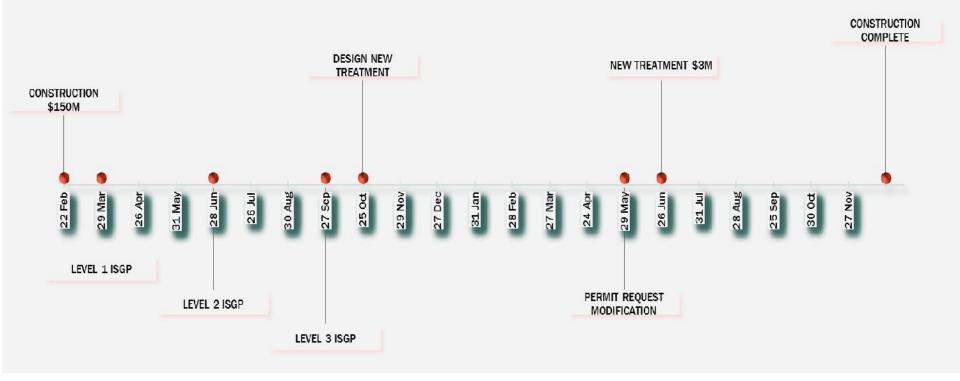

TSS reduced 82%

Zinc reduced 66%

Know your discharge – take the time to characterize

Manufacturer cannot alwavs

- Need for integrating permits
 - Take a holistic approach to managing stormwater
- Integrating MS4 treatment requirements and ISGP treatment needs was a logical connection
- Control costs for construction and O&M



Need to integrate the permits?

- Take advantage of the opportunity to reduce risk of expensive retrofit in near future
- Ability to capitalize costs for a return on investment
- · Simplify the treatment selection process during design phase
- Standardized guidance manual for all types of port-related projects

Example: Completed \$150M and began operation in Feb 2015; does not meet benchmarks Q1, Q2 or Q3; More treatment required by Dec 2016 – additional \$3M

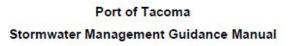
•

•

- Develop the program around integration of permits
- Develop Port-specific Best Management Practices to help customers
- Stakeholder Collaboration
 - ✓ City of Tacoma Inter Local Agreement
 - ✓ UW/WSU research and development
 - ✓ Tenant assistance and workshops

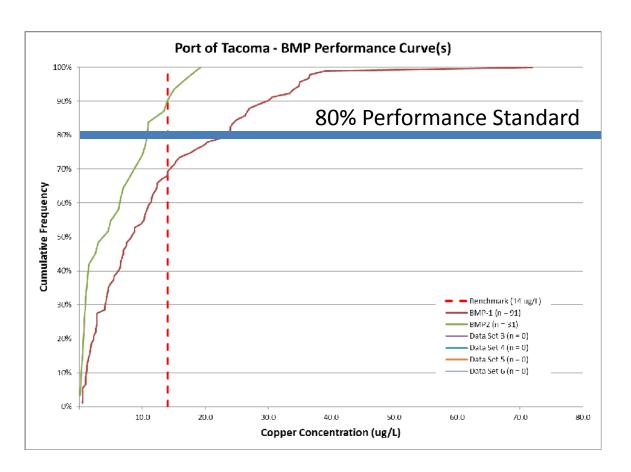
Port of Tacoma Stormwater Management Guidance Manual

- Inter-local Agreement with City of Tacoma
 - Required Port to implement program to conduct in-house <u>stormwater</u> <u>review</u> of projects
 - Applies to Port project draining to Port MS4 infrastructure and receiving waters
 - Coordination on all projects
- Companion document to
 - Stormwater Management Manual for Western Washington
 - City of Tacoma Surface Water



Port of Tacoma Stormwater Management Guidance Manual

- Port-specific supplemental guidance
 - Stormwater review required on all projects/leases (in partnership with Port Engineering)
 - Preferred, conditionally preferred, and not preferred treatment BMPs
 - Land Use activity trigger



March 2015

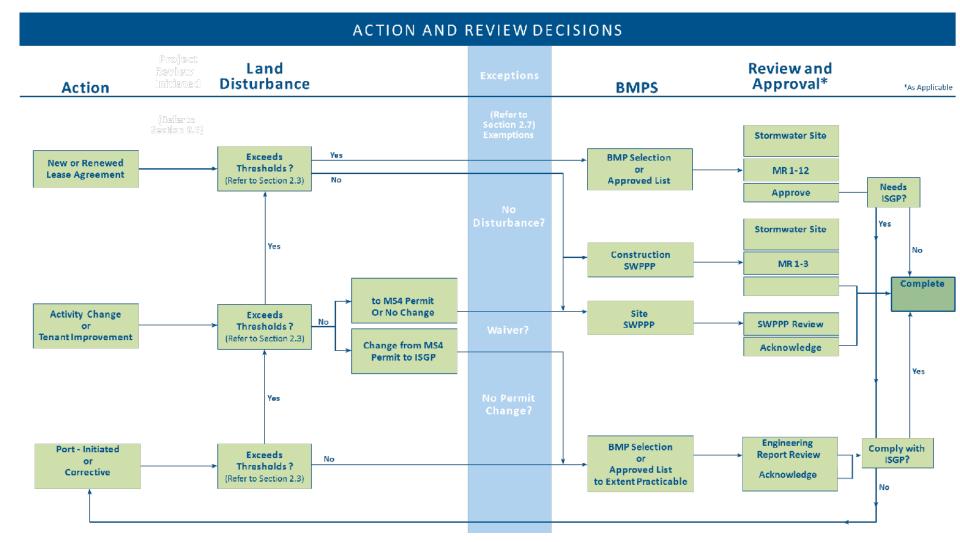
Treatment selection

Performance Curves

Port of Tacoma - Data for Percent-Exceedance Curve									
					Type ir				
Constituen			Data Name:	BMP-1	Set na				
Copper	constitu here	ient	Label:	BMP-1 (n :	= 91)				
Units			mean =	12.4	Paste v				
ug/L	Type in for all d		sd =	12.37332	sort ma				
	sets her		n =	91	smalles				
			Sorted Data	Index	Cum%				
	Benchmark		0.45	1	1.1%				
value	nere	_	0.5	2	2.2%				
	/		0.5	3	3.3%				
Benchmar	k 🖉		0.5	4	4.4%				
14	ug/L		0.5	5	5.5%				
14.0	0%		1	6	6.6%				
14.0	50%		1	7	7.7%				
14.0	100%		1	8	8.8%				
			1.1	9	9.9%				
			1.2	10	11.0%				
			1.2	11	12.1%				
Automatic	ally Calcul	lated:	1.3	12	13.2%				
X-axis Lab	el		1.4	13	14.3%				
Copper Cor	ncentration	(ug/L)	1.6	14	15.4%				
Benchmar	k Label		1.7	15	16.5%				
Benchmark	(14 ug/L)		1.8	16	17.6%				
			1.9	17	18.7%				
			2.3	18	19.8%				
			2.3	19	20.9%				
			2.6	20	22.0%				

Navigating stormwater requirements

- Easy to follow process flow for improvements or activity changes
- MS4 for new development
- ISGP for Level 3 corrective actions
- CSWP for projects not requiring treatment


٠

MS4 to ISGP – change in land use

Port of Tacoma Stormwater Management Guidance Manual

Other Issues – Rules are constantly changing

Updated MS4 permit issued December 2014

٠

٠

•

- New ISGP issued 2015
 - New Construction Stormwater Permit coming in 2015
 - New Sand and Gravel Permit coming in 2015

Stormwater Management Program

• Thank you

Questions

٠

